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20 epochs 200 epochs 2000 epochs ﬂeqs' signal spectrum.

Epochs| FFM FINER TUNER
1000 [29.42 30.23 3214
5000 [3119 31.00 33.16

Prior works randomly initialize
the input fregs. w in a given
range. While this allows the
model to represent high fregs,
it may lead to overfitting.

We initialize « with many low and few high frequencies chosen
in %”Zz to bypass spectral bias. They are frozen during training.
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Frequency control
Previous methods may introduce ringing noise or artifacts.

In particular, BANF exhibit many freqs outside the bandlimit.

During training, we bound o, by
the maximum absolute value of
the hidden matrix columns.
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Fixed bounds
Wv—clamp(WV L‘/)

No bandlimit 0 Bandlimit (ours)

The lack of spectral

| control leads to noisy
"g reconstruction of
= £ signal and gradient.

Learned bounds
ercj tanh(W1J)




